ErLLVM: An LLVM back-end for HiPE, the

native code compiler of Erlang/OTP

Design and Implementation

Chris Stavrakakis, Yiannis Tsiouris

{cstav,gtsiour}@softlab.ntua.gr

Software Engineering Laboratory
Division of Computer Science
Department of Electrical and Computer Engineering
National Technical University of Athens

November 5, 2011

Overview

Overview

What is ErLLVM?(except for a cool name :-)

A project aiming at providing multiple back ends for High
Performance Erlang (HiPE) with the use of the Low Level Virtual
Machine (LLVM) compiler infrastructure. Ultimate goal: improve
performance and code maintenance.

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Overview

Outline

© Motivation

© Design
@ Compiler Architecture
@ Integration with ERTS

© Evaluation
o Complexity
@ Performance

@ Conclusion

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Motivation

Table of Contents

© Motivation

Yiannis Tsiour ErLLVM, Design and Implemer

Motivation

High Performance Erlang (HiPE)

A native code compiler for Erlang.

A project, that started at the Department of Information
Technology (division of Computer Science) of Uppsala
University, aimed at efficiently implementing concurrent
programming systems using message-passing in general and
Erlang in particular.

Integrated in Ericsson’'s Open Source Erlang/OTP system
since 2001.

A mature project that has been developed and widely used for
more than 10 years.

Provides back ends for ARM, SPARC V8+, X86, AMD64,
PowerPC and PowerPC64.

uris (softlab@NTUA) ErLLVM, Design and Implementation

Motivation

What is LLVM?

Collection of industrial strength compiler technology

@ Language-independent optimizer and code generator
Many optimizations, many targets, generates great code.

e Clang C/C++/Objective-C front end
Designed for speed, reusability, compatibility with GCC quirks.

@ Debuggers, "binutils”, standard libraries
Providing pieces of low-level toolchain, with many advantages.

Strong Point: High-level portable LLVM assembly
¢ RISC-like instruction set
¢ strict type system
o Static Single Assignment (SSA) form

o three different forms (human-readable, on-disk, in-memory)

uris (softlab@NTUA) ErLLVM, Design and Implementation

Motivation

Why LLVM?

@ Used as static or just-in-time compiler, and for static code
analysis.

@ State-of-the-art software in C4++ with a very active
community of developers.

@ A new compiler = glue code plus any components not yet
available. Allows choice of the right component for the job,
e.g. register allocator, scheduler, optimization order.

@ Supports many system architectures, e.g. X86, ARM,
PowerPC, SPARC, Alpha, MIPS, Blackfin, CellSPU, MBlaze,
MSP430, XCore and many morel!

@ Open-source with a BSD-like License and many contributors
(industry, research groups, individuals).

uris (softlab@NTUA) ErLLVM, Design and Implementation

Motivation

Similar projects

Lots of other applications:
« OpenCL: a GPGPU language, with most vendors using LLVM
« Dynamic Languages: Unladen Swallow, Rubinious, MacRuby
* llvm-gcc 4.2 and DragonEgg
« Cray Cascade Fortran Compiler
x vmkit: Java and .NET VMs
* Haskell, Mono, LDC, Pure, Roadsend PHP, RealBasic
x 10Quake3 for real-time raytracing of Quake!

http://1lvm.org/Users.html

uris (softlab@NTUA) ErLLVM, Design and Implementation

http://llvm.org/Users.html

Motivation

Incentive

o Simplify

o One back end instead of V.

o Small-sized, straightforward code.

o Easy maintenance.

o Outsource work on implementing and maintaining back ends!
@ Performance

o Improve run-time.

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Table of Contents

© Design
@ Compiler Architecture
@ Integration with ERTS

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Compiler Architecture

HiPE’s Compilation Pipeline

Existing pipeline:

Memory
BEAM
/ .
BEAM | Dissassembler
/ Bytecode
BEAM Other
Emulator Data RTL
\ Native [E— HiPE
Code Loader l SPJ?RC l l XISG l lPowe]rPCl
Erlang Run-Time System HiPE Compiler

@ IR transformations:
BEAM — Icode — RTL — Symbolic target-specific assembly
@ Register allocation
@ Frame management: Check for stack overflow, set-up frame,
create stack descriptors, add "special” code for tail-calls.
@ Linearization
@ Assembler

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Compiler Architecture

New HiPE’s Compilation Pipeline

Modified pipeline:

“onest | oo ||
BEAM Dissassembler BEAM
|| Briecte T
Icode
BEAM Other
Emulator Data
. LLVM
\ Native 1 — HiPE ['sparc][x86 |- [PowerPC |
Code Loader I I T |
Erlang Run-Time System HiPE Compiler

Place back end along with the other HiPE back ends: after RTL.
RTL is low-level Erlang, yet target-independent.

Erlang’s high-level characteristics have been lowered.

Use existing HiPE Loader for ERTS integration = Be ABI
compatible!

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Compiler Architecture

The LLVM component
[rm |

LLVM back end

o
LLVM A bl
’\)\) E@ hipe rt1211lvm Create human-readable LLVM

LLvt assenbler assembly (.II)

- llvm-as Human-readable assembly (.II) —
@@ LLVM bitcode (.bc)

LLWM optimizer opt Optimization Passes, supports

tandard -01, -02, -03
[o Bitcode | (et)

LUt compiler llc Bitcode (.bc) — Native assembly
(.s), impose rules about memory

Native Assembly model, stack alignment, etc.

LLVM-GCC assenbler llvim-gcc Create object file (.s — .0)

elf64_format Extract executable code and
relocations

Object Code

Object file parser

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Design
©0000000

Integration with ERTS

Subtle Points

Current work focused on providing an AMD®64 back end.

e Calling convention:
VM “special” registers, arguments and return values,
callee-/caller-saved registers, callee pops arguments

@ Explicit frame management:
In-lined code for stack-overflow checks in assembly prologue

@ Stack descriptors:
Exception Handling, precise Garbage Collection

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Design
0®000000

Integration with ERTS

Calling Convention

o Virtual registers with “special” use, pinned to hardware

Native stack pointer %nsp
Heap pointer %r15
Process pointer %rbp

registers (unallocatable).

@ Arguments and return values use target-specific registers.
@ NR_ARG_REGS arguments are placed in registers.
o Certain registers of the register set are caller-/callee-save.

o Callee should always pop the arguments (to properly support
tail calls).

I LLvm

LLVM handles these by implementing a custom calling convention.

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Design
0®000000

Integration with ERTS

Calling Convention

o Virtual registers with “special” use, pinned to hardware

Native stack pointer %nsp
Heap pointer %r15
Process pointer %rbp

registers (unallocatable).

@ Arguments and return values use target-specific registers.
@ NR_ARG_REGS arguments are placed in registers.
o Certain registers of the register set are caller-/callee-save.

o Callee should always pop the arguments (to properly support
tail calls).

I LLvm

LLVM handles these by implementing a custom calling convention.
%%XXX: Defining caller-saved registers involved a hack in the Code Generator!

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Design
00®00000

Integration with ERTS

Calling Convention & Register Pinning

Translate each call to a new call.

@ M parameters — N + M parameters

Native stack pointer | %nsp
@ K return values — N+ K return Heap pointer Yr15

values Process pointer Jrbp

@ Correct values on function entrance and return.
@ Manually scratch registers that are no longer needed.

1

define f (argl) {
call g (argl, arg2);

return O;

is (softlab@NTUA) ErLLVM, Design and Implementation

Design
000®0000

Integration with ERTS

Calling Convention & Register Pinning

Translate each call to a new call.
@ M parameters — N + M parameters

Native stack pointer | %nsp
@ K return values — N+ K return Heap pointer Yr15

values Process pointer Jrbp

@ Correct values on function entrance and return.
@ Manually scratch registers that are no longer needed.

1

define hipe_cc f (NSP, HP, P, argl) {
call hipe_cc g (NSP', HP', P', argl, arg2);

return {NSP'', HP'', P'', 0};
}

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Design
0000®000

Integration with ERTS

Custom Prologue

Frame management phase in HiPE's pipeline is responsible for
setting-up the frame and adding stack overflow checks.

I LLvm

Modify (hack!) Code Generator and add prologue code to handle stack
overflow.

@ Start with small fixed stack.

© If allocated stack is not enough (i.e.
maximum frame size that might need
for temps, call frames etc.), double
stack frame.

© Check again.

"Enough”

Sta
call inc_stack

Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

Design
00000®00

Integration with ERTS

Stack Descriptors

Provide information about the caller's frame at call sites.

@ Exception handler

. . fo0/0
o Fixed frame size Arg 7 L
. . . s Tot addr (Cfoo) Stack Descriptor:
(excluding incoming g Dead var/7_yl{0, 5, 3, [0,21}
arguments) % Dead
. & Live
@ Stack arity * Doad
@ Live words in frame Live s
ret addr ar
@ Return address of call zap/0
site
U LLVM

Create GC plugin in LLVM to write GC information in object file.
Use elf64 format to parse generated object file and extract
corresponding information.

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

Design
000000e0

Integration with ERTS

Accurate Garbage Collection with LLVM

o Framework for compile time code generation plugins =
Generate code confronting to the binary interface specified by
the runtime.

@ GC intrinsics to locate all places that hold live pointer
variables at run-time.

1lvm.gcroot

“The llvm.gcroot intrinsic is used to inform LLVM that a stack
variable references an object on the heap and is to be tracked for
garbage collection.”

Problem: “Root property” is not a characteristic of a value but of
a stack slot. It is responsibility of the front end to mark them as
not live when variables that “inhabit” them are no longer live.

(softlab@NTUA) ErLLVM, Design and Implementation

Design
0000000Oe

Integration with ERTS

An example

// A null—initialized reference to an object
Object X;

Implementation

Design
0000000Oe

Integration with ERTS

An example

// A null—initialized reference to an object
Object X;

Entry:

In the entry block for the function,
;; allocate the stack space for X, which
;; is an LLVM pointer.

%X = alloca %Objectx

;i Tell LLVM that the stack space is a stack
;7 root. Java has type—tags on objects, so we
;; pass null as metadata.

%tmp = bitcast %Objectxx %X to i8xx

call void @llvm.gcroot(i8xx %X, i8% null)

;7 "CodeBlock” is the block corresponding to
;7 the start of the scope above.

CodeBlock:

;7 Java null—initializes pointers.

store %Object* null, %Objectx* %X

;i As the pointer goes out of scope, store a
;7 null value into it, to indicate that the
;; value is no longer live.

store %Objects null, %Objectx* %X

ErLLVM, Design Implementation

Design
0000000Oe

Integration with ERTS

An example

// A null—initialized reference to an object
Object X;

Entry:

In the entry block for the function,
;; allocate the stack space for X, which
;; is an LLVM pointer.

%X = alloca %Objectx

;i Tell LLVM that the stack space is a stack
;7 root. Java has type—tags on objects, so we
;; pass null as metadata.

%tmp = bitcast %Objectxx %X to i8xx

call void @llvm.gcroot(i8%x %X, i8x null)

;7 "CodeBlock” is the block corresponding to
;7 the start of the scope above.

CodeBlock:

;7 Java null—initializes pointers.

store %Object* null, %Objectx* %X

;i As the pointer goes out of scope, store a
;7 null value into it, to indicate that the
;; value is no longer live.

store %Objects null, %Objectx* %X

Implemen

Evaluation

Table of Contents

© Evaluation
o Complexity
@ Performance

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

Complexity

Simplify!

Evaluation
°

Back end Size
Total: 5362

ARM Code: 3891
Comments: 883 (17.6%)
Total: 5148

SPARC Code: 3622
Comments: 881 (19.6%)
Total: 10474

X86/AMD64 | Code: 7463
Comments: 1953 (18.6%)
Total: 6695

PPC/PPC64 | Code: 5009
Comments: 892 (15.1%)
Total: 5288

LLVM Code: 3408
Comments: 1293 (27.5%)

Christos Stavrakakis (softlab@NTUA)

LLVM

@ Straightforward translation
from RTL to LLVM

@ ~ 1/4 of code is comments

@ ~ 1/4 is the representation
of LLVM language

e ~ 1/3 is the Object file
parser module

Other
@ A lot of target-specific code
@ Nasty code of an assembler

@ Re-inventing the wheel!

ErLLVM, Design and Implementation

Evaluation
[I}

Performance

Run-time

Benchmark suite: 13 sequential/4 concurrent. 16-core Intel Xeon

E7340 @ 2.40GHz/16GB RAM, Debian GNU/Linux 64-bit.
5.66

O BEAM/LLVM | |
B Erjang/LLVM
O HiPE/LLVM |

4

Runtime Speedup

length
gsort
smith
decode
nrev
huff
barnes
prettypr
life
stable
ring

length_c
length_u
aws_html
w_estone
Average

Y

ErLLVM, Design and Implementation

Evaluation
oce

Performance

Compile Times, Object Sizes

Benchmark suite: stdlib (79 modules) and hipe (196 modules)
1

1 T T T T T T

Eoogf T OB 8
= [

§)

=1 [0}
O 1% ot | 1
£]

<] 2

s >

S o0l 1 ﬁ 04 |1 | 1
3 4

o I

o

T 02— | 1 02— |1 | 1

0
stdlib hi pe Average stdlib hi pe Average
Benchmark Benchmark

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

Conclusion

Table of Contents

@ Conclusion

ErLLVM, Design and Implementation

Conclusion

Concluding Remarks

Pros:
+ Complete: Compiles all Erlang programs.

+ Fully compatible with HiPE Application Binary Interface
(ABI). Thus, supports all Erlang features (e.g. hot-code
loading, garbage collection, exception handling).

+ Smaller and simpler code base.
+ LLVM developers now work for HiPE!
Cons:

- Inefficient code because of LLVM's Garbage Collection
infrastructure.

- More complicated distribution and installation.
- Higher compilation times.

- Bigger binaries.

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

Conclusion

Future Work

@ Create http://erllvm.softlab.ntua.gr and add design
and implementation technical details.

o Extend the LLVM back end to support all six architectures
that HiPE currently supports.

@ Improve LLVM Garbage Collection [1].

@ Improve compilation times: study other ways of printing
assembly (e.g. use of buffers), use Erlang LLVM bindings [2].

@ Work on pushing LLVM and HiPE patches upstream!

@ Provide more back ends to HiPE by extending the Erlang
Run-Time System (ERTYS).

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

http://erllvm.softlab.ntua.gr

Conclusion

Get it!

Guinea pigs are welcome! :-)

@ Grab code from Github:

(i, LLVM [3]
’5 4 ii. Erlang/OTP [4]
- © Install following the instructions included
- 4“ in the repositories.

@ Test and measure!

Christos Stavrakakis (softlab@NTUA)

ErLLVM, Design and Implementation

Conclusion

Any questions?

tos Stavrakakis Implementation

http://dannybrown.me/wp-content/uploads/2011/01/success_baby.jpg

Conclusion

Any questions?
Thanks!

gn and Implementation

http://dannybrown.me/wp-content/uploads/2011/01/success_baby.jpg

Conclusion

Any questions?
Thanks!

-
'

http://dannybrown.me/wp-content/uploads/2011/01/success_baby. jpg

Implementation

http://dannybrown.me/wp-content/uploads/2011/01/success_baby.jpg

References

[1] LLVMdev mailing list "Improving Garbage Collection”
discussion.
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-
July/041290.html.

[2] llewmis an erlang wrapper to the C API functions of LLVM
created by Lukas Larsson.
http://www.github.com/garazdawi/llevm.

[3] Custom LLVM implementing a HiPE ABl-compliant back end.
http://github.com/yiannist/11lvm.

[4] Erlang/OTP fork in order to work on implementing an LLVM
back end for HiPE. http://github.com/yiannist/otp.

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-July/041290.html
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-July/041290.html
http://www.github.com/garazdawi/llevm
http://github.com/yiannist/llvm
http://github.com/yiannist/otp

	Overview
	Motivation
	Design
	Compiler Architecture
	Integration with ERTS

	Evaluation
	Complexity
	Performance

	Conclusion
	References

