ErLLVM: An LLVM back-end for HiPE, the

native code compiler of Erlang/OTP

Design and Implementation

Chris Stavrakakis, Yiannis Tsiouris

{cstav,gtsiour}@softlab.ntua.gr

Software Engineering Laboratory
Division of Computer Science
Department of Electrical and Computer Engineering
National Technical University of Athens

November 23, 2011

Overview

Overview

What is ErLLVM?(except for a cool name :-)

A project aiming at providing multiple back ends for High
Performance Erlang (HiPE) with the use of the Low Level Virtual
Machine (LLVM) compiler infrastructure. Ultimate goal: improve
performance and code maintenance.

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Overview

Outline

© Motivation

© Design
@ Compiler Architecture
@ Integration with ERTS

© Evaluation
o Complexity
@ Performance

@ Conclusion

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Motivation

Table of Contents

© Motivation

Yiannis Tsiour ErLLVM, Design and Implemer

Motivation

High Performance Erlang (HiPE)

A native code compiler for Erlang.

A project, that started at the Department of Information
Technology (division of Computer Science) of Uppsala
University, aimed at efficiently implementing concurrent
programming systems using message-passing in general and
Erlang in particular.

Integrated in Ericsson’'s Open Source Erlang/OTP system
since 2001.

A mature project that has been developed and widely used for
more than 10 years.

Provides back ends for ARM, SPARC V8+, X86, AMD64,
PowerPC and PowerPC64.

uris (softlab@NTUA) ErLLVM, Design and Implementation

Motivation

What is Low-Level Virtual Machine?

Collection of industrial strength compiler technology
@ Language-independent optimizer and code generator
Many optimizations, many targets, generates great code.

e Clang C/C++/Objective-C front end
Designed for speed, reusability, compatibility with GCC quirks.

@ Debuggers, "binutils”, standard libraries
Providing pieces of low-level toolchain, with many advantages.

is (softlab@NTUA) ErLLVM, Design and Impleme

Motivation

What is Low-Level Virtual Machine?

Collection of industrial strength compiler technology

@ Language-independent optimizer and code generator
Many optimizations, many targets, generates great code.

e Clang C/C++/Objective-C front end
Designed for speed, reusability, compatibility with GCC quirks.

@ Debuggers, "binutils”, standard libraries
Providing pieces of low-level toolchain, with many advantages.

Strong Point: High-level portable LLVM assembly
¢ RISC-like instruction set
¢ strict type system
o Static Single Assignment (SSA) form

o three different forms (human-readable, on-disk, in-memory)

uris (softlab@NTUA) ErLLVM, Design and Implementation

Motivation

Why LLVM?

Used as static or Just-In-Time compiler, and for static code
analysis.

State-of-the-art software in C4++ with a very active
community of developers.

Library-based design:

A new compiler = glue code plus any components not yet
available. Allows choice of the right component for the job,
e.g. register allocator, scheduler, optimization order.

Supports many system architectures, e.g. X86, ARM,
PowerPC, SPARC, Alpha, MIPS, Blackfin, CellSPU, MBlaze,
MSP430, XCore and many morel!

Open-source with a BSD-like License and many contributors
(industry, research groups, individuals).

uris (softlab@NTUA) ErLLVM, Design and Implementation

Motivation

Similar projects

Lots of other applications:

*

*

OpenCL: a GPGPU language, with most vendors using LLVM

Dynamic Languages: Unladen Swallow, PyPy, Rubinious,
MacRuby

llvm-gcc 4.2 and DragonEgg

Cray Cascade Fortran Compiler

vmkit: Java and .NET VMs

Haskell, Mono, LDC, Pure, Roadsend PHP, RealBasic
IOQuake3 for real-time raytracing of Quake!

http://11lvm.org/Users.html

uris (softlab@NTUA) ErLLVM, Design and Implementation

http://llvm.org/Users.html

Motivation

Similar projects

Lots of other applications:

*

*

OpenCL: a GPGPU language, with most vendors using LLVM

Dynamic Languages: Unladen Swallow, PyPy, Rubinious,
MacRuby

llvm-gcc 4.2 and DragonEgg

Cray Cascade Fortran Compiler

vmkit: Java and .NET VMs

Haskell, Mono, LDC, Pure, Roadsend PHP, RealBasic
IOQuake3 for real-time raytracing of Quake!

http://11lvm.org/Users.html

uris (softlab@NTUA) ErLLVM, Design and Implementation

http://llvm.org/Users.html

Motivation

Similar projects

Lots of other applications:

*

*

OpenCL: a GPGPU language, with most vendors using LLVM

Dynamic Languages: Unladen Swallow, PyPy, Rubinious,
MacRuby

llvm-gcc 4.2 and DragonEgg

Cray Cascade Fortran Compiler

vmkit: Java and .NET VMs

Haskell, Mono, LDC, Pure, Roadsend PHP, RealBasic
IOQuake3 for real-time raytracing of Quake!

http://11lvm.org/Users.html

uris (softlab@NTUA) ErLLVM, Design and Implementation

http://llvm.org/Users.html

Motivation

Similar projects

Lots of other applications:

*

*

OpenCL: a GPGPU language, with most vendors using LLVM

Dynamic Languages: Unladen Swallow, PyPy, Rubinious,
MacRuby

llvm-gcc 4.2 and DragonEgg

Cray Cascade Fortran Compiler

vmkit: Java and .NET VMs

Haskell, Mono, LDC, Pure, Roadsend PHP, RealBasic
IOQuake3 for real-time raytracing of Quake!

http://11lvm.org/Users.html

uris (softlab@NTUA) ErLLVM, Design and Implementation

http://llvm.org/Users.html

Motivation

Incentive

o Simplify

o One back end instead of V.

o Small-sized, straightforward code.

o Easy maintenance.

o Outsource work on implementing and maintaining back ends!
@ Performance

o Improve run-time.

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Table of Contents

© Design
@ Compiler Architecture
@ Integration with ERTS

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Compiler Architecture

HiPE’s Compilation Pipeline

Existing pipeline:

Memory
BEAM
/ .
BEAM | Dissassembler
/ Bytecode
BEAM Other
Emulator Data RTL
\ Native [E— HiPE
Code Loader l SPJ?RC l l XISG l lPowe]rPCl
Erlang Run-Time System HiPE Compiler

@ IR transformations:
BEAM — Icode — RTL — Symbolic target-specific assembly
@ Register allocation
@ Frame management: Check for stack overflow, set-up frame,
create stack descriptors, add "special” code for tail-calls.
@ Linearization
@ Assembler

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Compiler Architecture

New HiPE’s Compilation Pipeline

Modified pipeline:

“onest | oo ||
BEAM Dissassembler BEAM
|| Briecte T
Icode
BEAM Other
Emulator Data
. LLVM
\ Native 1 — HiPE ['sparc][x86 |- [PowerPC |
Code Loader I I T |
Erlang Run-Time System HiPE Compiler

Place back end along with the other HiPE back ends: after RTL.
RTL is low-level Erlang, yet target-independent.

Erlang’s high-level characteristics have been lowered.

Use existing HiPE Loader for ERTS integration = Be ABI
compatible!

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Compiler Architecture

The LLVM component
[rm |

LLVM back end

o
LLVM A bl
’\)\) E@ hipe rt1211lvm Create human-readable LLVM

LLvt assenbler assembly (.II)

- llvm-as Human-readable assembly (.II) —
@@ LLVM bitcode (.bc)

LLWM optimizer opt Optimization Passes, supports

tandard -01, -02, -03
[o Bitcode | (et)

LUt compiler llc Bitcode (.bc) — Native assembly
(.s), impose rules about memory

Native Assembly model, stack alignment, etc.

LLVM-GCC assenbler llvim-gcc Create object file (.s — .0)

elf64_format Extract executable code and
relocations

Object Code

Object file parser

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Integration with ERTS

Subtle Points

Current work focused on providing an AMD®64 back end.

e Calling convention:
VM “special” registers, arguments and return values,
callee-/caller-saved registers, callee pops arguments

@ Explicit frame management:
In-lined code for stack-overflow checks in assembly prologue

@ Stack descriptors:
Exception Handling, precise Garbage Collection

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Integration with ERTS

Calling Convention

o Virtual registers with “special” use, pinned to hardware

Native stack pointer %nsp
Heap pointer %r15
Process pointer %rbp

registers (unallocatable).

@ Arguments and return values use target-specific registers.
@ NR_ARG_REGS arguments are placed in registers.
o Certain registers of the register set are caller-/callee-save.

o Callee should always pop the arguments (to properly support
tail calls).

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Integration with ERTS

Calling Convention

o Virtual registers with “special” use, pinned to hardware

Native stack pointer %nsp
Heap pointer %r15
Process pointer %rbp

registers (unallocatable).

@ Arguments and return values use target-specific registers.
@ NR_ARG_REGS arguments are placed in registers.
o Certain registers of the register set are caller-/callee-save.

o Callee should always pop the arguments (to properly support
tail calls).

I LLvm

LLVM handles these by implementing a custom calling convention.
%%XXX: Defining caller-saved registers involved a hack in the Code Generator!

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Integration with ERTS

Calling Convention & Register Pinning

Translate each call to a new call.
@ M parameters — N + M parameters

Native stack pointer | %nsp
@ K return values — N+ K return Heap pointer Yr15

Process pointer %rbp

values
@ Correct values on function entrance and return.
@ Manually scratch registers that are no longer needed.

!

define f (argl) {
call g (argl, arg2);

return O;

}

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Integration with ERTS

Calling Convention & Register Pinning

Translate each call to a new call.
@ M parameters — N + M parameters

Native stack pointer | %nsp
@ K return values — N+ K return Heap pointer Yr15

Process pointer %rbp

values
@ Correct values on function entrance and return.
@ Manually scratch registers that are no longer needed.

!

define hipe.cc £ (NSP, HP, P, argl) {
call hipe.cc g (NSP', HP', P', argl, arg2);

return {NSP'', HP'', P'', 0};
}

Yiannis Tsiouris (softlab@NTUA) ErLLVM, Design and Implementation

Integration with ERTS

Custom Prologue

Frame management phase in HiPE's pipeline is responsible for
setting-up the frame and adding stack overflow checks.

@ Start with small fixed stack.

© If allocated stack is not enough (i.e.
maximum frame size that might need
for temps, call frames etc.), double
stack frame.

© Check again.

Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

Integration with ERTS

Custom Prologue

Frame management phase in HiPE's pipeline is responsible for
setting-up the frame and adding stack overflow checks.

@ Start with small fixed stack.

© If allocated stack is not enough (i.e.
maximum frame size that might need
for temps, call frames etc.), double
stack frame.

© Check again.

I LLvm

Modify (hack!) Code Generator and add prologue code to handle
stack overflow.

Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

Integration with ERTS

Stack Descriptors

Provide information about the caller's frame at call sites.

@ Exception handler

. . fo0/0
o Fixed frame size Arg 7 L
. . . s Tot addr (Cfoo) Stack Descriptor:
(excluding incoming 8| [Dead bar/7 | {1, 5, 3, [0,2]}
arguments) % Dead
. & Live
@ Stack arity Dead
@ Live words in frame Live s
ret addr ar
@ Return address of call zap/0
site

Christos Stavrakakis (softlab@NTUA)

ErLLVM, Design and Implementation

Integration with ERTS

Stack Descriptors

Provide information about the caller's frame at call sites.

@ Exception handler

. . fo0/0
o Fixed frame size Arg 7 L
. . . s Tot addr (Cfoo) Stack Descriptor:
(excluding incoming g Dead var/7_yl{0, 5, 3, [0,21}
arguments) % Dead
. & Live
@ Stack arity * Doad
@ Live words in frame Live s
ret addr ar
@ Return address of call zap/0
site
U LLVM

Create GC plugin in LLVM to write GC information in object file.
Use elf64 format to parse generated object file and extract
corresponding information.

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

Integration with ERTS

Accurate Garbage Collection with LLVM

o Framework for compile time code generation plugins =
Generate code confronting to the binary interface specified by
the runtime.

@ GC intrinsics to locate all places that hold live pointer
variables at run-time.

1lvm.gcroot

“The llvm.gcroot intrinsic is used to inform LLVM that a stack
variable references an object on the heap and is to be tracked for
garbage collection.”

Problem: “Root property” is not a characteristic of a value but of
a stack slot. It is responsibility of the front end to mark them as
not live when variables that “inhabit” them are no longer live.

(softlab@NTUA) ErLLVM, Design and Implementation

Integration with ERTS

An example

fun foo(arg0) { ;;arg0 is root
x <— arg0+1; ;; Last use of arg0

}

mplementati

Integration with ERTS

An example

fun foo(arg0) { ;;arg0 is root
x <— arg0+1; ;; Last use of arg0
}

define foo(%arg0){

Entry:
;; In the entry block for the function,
;; allocate the stack space for arg0
%arg0_root = alloca
store %arg0, %argO_root

Tell LLVM that the stack space is a stack
;; root.
call void @llvm.gcroot(%argO_root, null)

;; As the pointer goes out of scope, store a
;7 null value into it, to indicate that the
;; value is no longer live.

store null, %arg0O_root

mplementati

Integration with ERTS

An example

fun foo(arg0) { ;;arg0 is root
x <— arg0+1; ;; Last use of arg0
}

define foo(%arg0){

Entry:
;; In the entry block for the function,
;; allocate the stack space for arg0
%arg0_root = alloca
store %arg0, %argO_root

Tell LLVM that the stack space is a stack
;; root.
call void @llvm.gcroot(%argO_root, null)

;; As the pointer goes out of scope, store a
;7 null value into it, to indicate that the
;; value is no longer live.

store null, %arg0O_root

mplemen

Evaluation

Table of Contents

© Evaluation
o Complexity
@ Performance

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

Complexity

Simplify!

Evaluation
°

Back end Size
Total: 5362

ARM Code: 3891
Comments: 883 (17.6%)
Total: 5148

SPARC Code: 3622
Comments: 881 (19.6%)
Total: 10474

X86/AMD64 | Code: 7463
Comments: 1953 (18.6%)
Total: 6695

PPC/PPC64 | Code: 5009
Comments: 892 (15.1%)
Total: 5288

LLVM Code: 3408
Comments: 1293 (27.5%)

Christos Stavrakakis (softlab@NTUA)

LLVM

@ Straightforward translation
from RTL to LLVM

@ ~ 1/4 of code is comments

@ ~ 1/4 is the representation
of LLVM language

e ~ 1/3 is the Object file
parser module

Other
@ A lot of target-specific code
@ Nasty code of an assembler

@ Re-inventing the wheel!

ErLLVM, Design and Implementation

Evaluation
[I}

Performance

Run-time

Benchmark suite: 13 sequential/4 concurrent. 16-core Intel Xeon

E7340 @ 2.40GHz/16GB RAM, Debian GNU/Linux 64-bit.
5.66

O BEAM/LLVM | |
B Erjang/LLVM
O HiPE/LLVM |

4

Runtime Speedup

length
gsort
smith
decode
nrev
huff
barnes
prettypr
life
stable
ring

length_c
length_u
aws_html
w_estone
Average

Y

ErLLVM, Design and Implementation

Evaluation
oce

Performance

Compile Times, Object Sizes

Benchmark suite: stdlib (79 modules) and hipe (196 modules)
1

1 T T T T T T

Eoogf T OB 8
= [

§)

=1 [0}
O 1% ot | 1
£]

<] 2

s >

S o0l 1 ﬁ 04 |1 | 1
3 4

o I

o

T 02— | 1 02— |1 | 1

0
stdlib hi pe Average stdlib hi pe Average
Benchmark Benchmark

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

Conclusion

Table of Contents

@ Conclusion

ErLLVM, Design and Implementation

Conclusion

Concluding Remarks

Pros:
+ Complete: Compiles all Erlang programs.

+ Fully compatible with HiPE Application Binary Interface
(ABI). Thus, supports all Erlang features (e.g. hot-code
loading, garbage collection, exception handling).

+ Smaller and simpler code base.
+ LLVM developers now work for HiPE!
Cons:

- Inefficient code because of LLVM's Garbage Collection
infrastructure.

- More complicated distribution and installation.
- Higher compilation times.

- Bigger binaries.

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

Conclusion

Future Work

@ Create http://erllvm.softlab.ntua.gr and add design
and implementation technical details.

o Extend the LLVM back end to support all six architectures
that HiPE currently supports.

@ Improve LLVM Garbage Collection [1].

@ Improve compilation times: study other ways of printing
assembly (e.g. use of buffers), use Erlang LLVM bindings [2].

@ Work on pushing LLVM and HiPE patches upstream!

@ Provide more back ends to HiPE by extending the Erlang
Run-Time System (ERTYS).

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

http://erllvm.softlab.ntua.gr

Conclusion

Get it!

Guinea pigs are welcome! :-)

@ Grab code from Github:

(i, LLVM [3]
’5 4 ii. Erlang/OTP [4]
- © Install following the instructions included
- 4“ in the repositories.

@ Test and measure!

Christos Stavrakakis (softlab@NTUA)

ErLLVM, Design and Implementation

Conclusion

Any questions?

tos Stavrakakis Implementation

http://dannybrown.me/wp-content/uploads/2011/01/success_baby.jpg

Conclusion

Any questions?
Thanks!

gn and Implementation

http://dannybrown.me/wp-content/uploads/2011/01/success_baby.jpg

Conclusion

Any questions?
Thanks!

-
'

http://dannybrown.me/wp-content/uploads/2011/01/success_baby. jpg

Implementation

http://dannybrown.me/wp-content/uploads/2011/01/success_baby.jpg

References

[1] LLVMdev mailing list "Improving Garbage Collection”
discussion.
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-
July/041290.html.

[2] llewmis an erlang wrapper to the C API functions of LLVM
created by Lukas Larsson.
http://www.github.com/garazdawi/llevm.

[3] Custom LLVM implementing a HiPE ABl-compliant back end.
http://github.com/yiannist/11lvm.

[4] Erlang/OTP fork in order to work on implementing an LLVM
back end for HiPE. http://github.com/yiannist/otp.

Christos Stavrakakis (softlab@NTUA) ErLLVM, Design and Implementation

http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-July/041290.html
http://lists.cs.uiuc.edu/pipermail/llvmdev/2011-July/041290.html
http://www.github.com/garazdawi/llevm
http://github.com/yiannist/llvm
http://github.com/yiannist/otp

	Overview
	Motivation
	Design
	Compiler Architecture
	Integration with ERTS

	Evaluation
	Complexity
	Performance

	Conclusion
	References

