An LLVM back-end for HiPE, the native code
compiler of Erlang/OTP

Christos Stavrakakis, Yiannis Tsiouris

November, 2011

Abstract

Existing open-source compilers are based on old code generation technology,
with code bases that are difficult to learn and hard to change, and share no
code between each other. The Low Level Virtual Machine (LLVM) is a state-
of-the-art compiler infrastructure providing a set of reusable components
that implement the best known techniques focusing on compile time and
performance of the generated code. The goal of LLVM is to provide modular
components for building high quality compilers for many different languages.

This thesis describes the architecture, design decisions and implementa-
tion details of a new back end for HiPE, the native code compiler of Er-
lang/OTP, that targets the LLVM infrastructure. One of HiPE’s intermedi-
ate representation, called Register Transfer Language (RTL), was found to
have a very straightforward translation to LLVM assembly. However, there
were a few subtle points, such as the calling convention, the exception han-
dling mechanism and garbage collection, that needed to be handled in order
to retain Application Binary Interface (ABI) compatibility with the Erlang
Run-Time System (ERTS) and integrate our work in the existing Virtual Ma-
chine architecture. For these reasons we patched the LLVM Code Generator
and imposed rules on the generated binary code.

In the evaluation we detail the current complexity and performance of the
new LLVM back end for the AMDG64 architecture. The run-time performance
was found to be comparable with HiPE and signifficantly faster than BEAM
virtual machine and Erjang, a virtual machine for Erlang based on the Java
Virtual Machine (JVM). The complexity of the LLVM back end proved to be
far simpler; especially, if you take into consideration that, with rather plain
extensions, it can support all hardware architectures that HiPE currently
targets. Various performance improvements are planned for future work.



Keywords

Erlang, HiPE compiler, native code compilation, LLVM framework, back end,
high-level assembly, intermediate representation transformation, compile-time
optimizations



